

Demonstrate on whiteboard - how to answer.

$$(ZM = W \times 0.15)$$

 $\geq M) = 1.5 \times 0.35 + 2.5 \times 0.6$
 $= 0.525 + 1.5$
 $= 2.025$
 $W = 2.025 = 13.5N$

Demonstrate on whiteboard - how to answer.

Moments about P

$$\left(\sum M = Q \times 0.115\right)$$

$$\geq M = W \times 0.075 + 2W \times 2$$

$$0.15Q = 0.075W + 2W \times 2$$

$$P + Q = W + 2W = 3W$$

$$Ab = Q \Rightarrow Ab = 3W$$

$$Ab = Ab = 3W$$

$$Ab =$$

(1.25 cm)

So: 0.15x24= 0.0754 + 24 x

Model on the whiteboard how to lay out the working out clearly Sum of total clockwise moments =
Sum of total anticlockwise moments = Equilibrium, so sum of clockwise = sum of anticlockwise Etc. etc...

Learning Objectives: Projectile Motion; Moments & torques (couples), Newton's Laws of motion, momentum, collisions and impulse, 3rd law interactions), Practica

Using the Principle of Moments

M.S.E = A

Like with SUVAT questions, it helps if you lay your working out very clearly.

Work out clockwise moments and anticlockwise moments separately.

母15

Learning Objectives: Projectile Motion; Moments & torques (couples), Newton's Laws of motion, momentum, collisions and impulse, 3rd law interactions); Practical Skills

Example:

A ball of mass 1.5kg is travelling towards a wall at 3ms⁻¹. It hits the wall and bounces back with a speed of 2ms⁻¹. The ball is in contact with the wall for 0.2s. Calculate:

- a) The change in momentum
- b) The impulse
- c) The force exerted on the wall

Tip: Always remember that momentum and velocity are vectors, so you MUST take account of direction

- a) 7.5kgms⁻¹
- b) 7.5kgms⁻¹
- c) 37.5N

Draw diagram on whiteboard to show clearly the change in direction

$$t=0.2s$$

$$=3ms^{-1}$$

$$=3ms^{-1}$$

$$P_{1} = 1.5 \times 3$$
 $P_{2} = -1.5 \times 2$

Impulse =
$$\Delta P$$

 $T = \Delta P = \frac{7.5}{6.2} = 37.5 \text{ N}$

Estimating the area under a graph – counting squares

Area =
$$(130,000 \times 7) + (\frac{1}{2} \times 3 \times 130,000) + (\frac{1}{2} \times 2.5 \times 90,000)$$

= (1.2×10^6)

Then spend 10 minutes attempting the Practical Skills questions (writing two methods)

Check and assess using markschemes - Method, Measurements, Analysis

mgsine III

 $\alpha = \frac{V_2^2 - U_1^2}{2S}$

mgsino= ma gsino= a al gat = g

Sin 8

